Improved complexity using higher-order correctors for primal-dual Dikin affine scaling

نویسندگان

  • Benjamin Jansen
  • Kees Roos
  • Tamás Terlaky
  • Yinyu Ye
چکیده

A selection of these reports is available in PostScript form at the Faculty's anonymous ftp-No part of this Journal may be reproduced in any form, by print, photoprint, microolm or any other means without written permission from Abstract In this paper we show that the primal{dual Dikin aane scaling algorithm for linear programming of Jansen, Roos and Terlaky enhances an asymptotical O(p nL) complexity by using corrector steps. We also show that the result remains valid when the method is applied to positive semi{ deenite linear complementarity problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

I . I . Dikin ' s Convergence Result for the Affine - Scaling Algorithm

The affine-scaling algorithm is an analogue of Karmarkar's linear programming algorithm that uses affine transformations instead of projective transformations. Although this variant lacks some of the nice properties of Karmarkar's algorithm (for example, it is probably not a polynomial-time algorithm). it nevertheless performs well in computer implementations. It has recently come to the attent...

متن کامل

Polynomial Primal-Dual Affine Scaling Algorithms in Semidefinite Programming

Two primal{dual a ne scaling algorithms for linear programming are extended to semide nite programming. The algorithms do not require (nearly) centered starting solutions, and can be initiated with any primal{dual feasible solution. The rst algorithm is the Dikin-type a ne scaling method of Jansen et al. [8] and the second the pure a ne scaling method of Monteiro et al. [12]. The extension of t...

متن کامل

A polynomial primal-dual affine scaling algorithm for symmetric conic optimization

The primal-dual Dikin-type affine scaling method was originally proposed for linear optimization and then extended to semidefinite optimization. Here, the method is generalized to symmetric conic optimization using the notion of Euclidean Jordan algebras. The method starts with an interior feasible but not necessarily centered primal-dual solution, and it features both centering and reducing th...

متن کامل

A Polynomial-Time Primal-Dual Affine Scaling Algorithm for Linear and Convex Quadratic Programming and Its Power Series Extension

We describe an algorithm for linear and convex quadratic programming problems that uses power series approximation of the weighted barrier path that passes throi^ the current iterate in order to find the next iterate. If r » 1 is the order of approximation used, we show that our algorithm has time complexity O(n'"""^'^*i."*'^'') iterations and O{n^ + n^r) arithmetic operations per iteration, wh...

متن کامل

Nonsymmetric potential-reduction methods for general cones

In this paper we propose two new nonsymmetric primal-dual potential-reduction methods for conic problems. The methods are based on the primal-dual lifting [5]. This procedure allows to construct a strictly feasible primal-dual pair related by an exact scaling relation even if the cones are not symmetric. It is important that all necessary elements of our methods can be obtained from the standar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 76  شماره 

صفحات  -

تاریخ انتشار 1996